न्यूट्रिनो (Neutrino) यह एक नया कण (Particle) है जिसका सर्वप्रथम आविष्कार सन् 1930 में पौली ने किया था। इस कण का प्रथम सैद्धांतिक आधार प्रसिद्ध भौतिकीविद फर्मी ने सन् 1934 में बतलाया।
न्यूट्रिनो के गुण संक्षेप में निम्नलिखित हैं :
उन अभिक्रियाओं की, जिनसे बीटा किरणें मिलती है, जाँच करते समय यह देखा गया कि निकले हुए कणों का ऊर्जा वर्णक्रम (Spectrum) ऐल्फ़ा किरण के ऊर्जा वर्णक्रम से भिन्न है। ऐल्फ़ा किरणें पृथक् रेखा वर्णक्रम के अनुसार मिलती हैं, पर बीटा किरणें उनसे पूर्णत: भिन्न प्रकार के संतत वर्णक्रम का अनुकरण करती हैं। रेडियम-ई (Radium E) के लिये प्राप्त बीटा किरण का ऊर्जा वर्णक्रम चित्र में दिखाया गया है। बीटा किरणों की ऊर्जा का शून्य से लेकर अधिकतम मान ई अ के बीच कोई भी मान हो सकता है। ऐसा ही संतत वर्णक्रम उन अभिक्रियाओं में भी मिलता है जिनसे पॉज़िट्रान प्राप्त होते हैं।
बीटा किरणों द्वारा दिए संतत वर्णक्रम का सैद्धांतिक आधार स्थिर करना बहुत समय तक कठिन समस्या बना रहा। मान लिया जाय कि किसी नाभिक क से, जो एक विशेष ऊर्जा के तल पर है, एक बीटा किरण निकलती है और इस अभिक्रया द्वारा एक दूसरा नाभिक ख बनता है, जो पुन: एक विशेष ऊर्जा के तल पर है। पुज एवं ऊर्जास्थिरता के सिद्धांत: के अनुसार, निकले हुए बीटा कण की ऊर्जा नाभिक क एवं ख के ऊर्जातलों क अंतर के बराबर होनी चाहिए। यह ऊर्जा सिद्धांत सर्वदा E=mc2 के तुल्य प्राप्त होती है। परीक्षा से कण शुन्य से लेकर E=mc2 तक सभी मान की ऊर्जा लेकर निकलते हैं। ऐसा प्रतीत हाता है कि ऐसी अभिक्रियाओं में ऊर्जा का कुछ अंश लुप्त हो जाता है और पुंज एवं ऊर्जा स्थिरता के सिद्धांत का अतिक्रमण होता है।
इस समस्या को फर्मी ने बीटा किरण के बाद वाली अपनी न्यूट्रिनो उपकल्पना देकर सर्वप्रथम सफलतापूर्वक सुलझाया। उन्होंने यह सुझाव दिया कि बीटा किरण देने वाली अभिक्रियाओं में एक और कण न्यूट्रिनो भी प्राप्त होता है और वही लुप्त प्रतीत होने वाली ऊर्जा को ग्रहण कर लेता है। आज तक परीक्षा से न्यूट्रिनो की पहचान नहीं हो पाई है, फलत: इसके गुण ऐसे होने चाहिए जिनके कारण इसकी पहचान अति कठिन हो। इसलिये यह धारणा की गई कि न्यूट्रिनो आवेश रहित है और इसका भार इलेक्ट्रान की तुलना में अतिन्यून है, शुन्य के ही लगभग है। न्यूट्रिनो का आवेशरहित होना, बीटा किरण की अभिक्रिया के लिये आवेशस्थिरता के सिद्धांत के अनुसार है। न्यूट्रिनो परिकल्पना के अनुसार, बीटा किरण अभिक्रिया में प्राप्त हुई ऊर्जा की मात्रा इर् अ है। यह ऊर्जा बीटा कण न्यूट्रिनो एवं प्रतिक्षिप्त नाभिक को प्राप्त होती है। तीन कणों में ऊर्जा विभाजन अनेकानेक भाँति हो सकता है, इसलिये संतत वर्णक्रम बन जाता है।
जब एक नाभिक से बीटा किरण प्राप्त होती है, तब नाभिक के आवेश का इकाई द्वारा परिवर्तन होती है, तब नाभिक के आवेश का इकाई द्वारा परिवर्तन होता है, भार अपरिवर्तित रहता है। यदि एक इलेक्ट्रान प्राप्त हो, तो नाभिक के प्रोटान की संख्या में इकाई की वृद्धि होती है तथा क्लीबाणु इकाई द्वारा संख्या इकाई द्वारा कम हो जाती है। उसी भाँति यदि बीटा किरण अभिक्रिया में एक पॉजिट्रॉन प्राप्त हो तो प्रोटान संख्या इकाई द्वारा कम तथा क्लीबान संख्या में इकाई की वृद्धि होती है। इन बीटा रूपांतरों को निम्नलिखित ढंग से स्पष्ट किया जा सकता है:
इन अभिक्रियाओं में न्यूट्रान को प्रोटान, इलेक्ट्रान एवं न्यूट्रिनो से बना हुआ नहीं माना गया है। बीटा-उत्सर्जन के समय, न्यूट्रान का तीन कणों में तत्क्षण परिवर्तन हो जाता है। इसी प्रकार का निवर्तन बीटा +उत्सर्जन में प्रोटान में हो जाता है।
(क) एवं (ख) समीकरणों द्वारा न्यूट्रिनो के अन्य गुणों के बारे में भी सूचना मिलती है। कोणीय गमता h/2 मान ली जाने पर ही उसकी (कोणीय गमता की) स्थिरता का नियम ठीक ठीक घटित होता है। उसी भाँति, सांख्यिकी के बारे में भी सूचना मिलती है। समीकरण (क) एवं (ख) में यदि सांख्यिकी की स्थिरता देखी जाय, तो यह नियम तभी सत्य ठहरता है जब न्यूट्रिनो फर्मी-डिराक सांख्यिकी का अनुसरण करे।
मेसॉन के अपक्षय की समस्याओं को हल करने के लिये भी न्यूट्रिनो परिकल्पना का प्रयोग किया गया। म्यू-मेसॉन (meson) जब एक इलेक्ट्रान में परिवर्तित होता है तब बीटा-किरण अभिक्रिया की भाँति, म्रमि तथा ऊर्जा स्थिरता के नियम खंडित हो जाते हैं। इन नियमों की सत्यता के लिये निम्नलिखित विधि बतलाई गई :
उसी प्रकार ऐल्फ़ा-मेसॉन अपक्षय निम्नलिखित समीकरण द्वारा दिखलाया जा सकता है।
(ग) एवं (घ) समीकरणों के विरूद्ध कोई संपरिक्षीय साक्ष्य नहीं है
इस भाँति न्यूट्रिनो द्वारा बीटा किरण एवं मेसॉन के अपक्ष्य की समस्याओं का सामाधान हुआ है। इस कण के लिये सभी साक्ष्य अभी तक अप्रत्यक्ष ही हैं।
न्यूट्रिनो (Neutrino) यह एक नया कण (Particle) है जिसका सर्वप्रथम आविष्कार सन् 1930 में पौली ने किया था। इस कण का प्रथम सैद्धांतिक आधार प्रसिद्ध भौतिकीविद फर्मी ने सन् 1934 में बतलाया।
न्यूट्रिनो के गुण संक्षेप में निम्नलिखित हैं :
उन अभिक्रियाओं की, जिनसे बीटा किरणें मिलती है, जाँच करते समय यह देखा गया कि निकले हुए कणों का ऊर्जा वर्णक्रम (Spectrum) ऐल्फ़ा किरण के ऊर्जा वर्णक्रम से भिन्न है। ऐल्फ़ा किरणें पृथक् रेखा वर्णक्रम के अनुसार मिलती हैं, पर बीटा किरणें उनसे पूर्णत: भिन्न प्रकार के संतत वर्णक्रम का अनुकरण करती हैं। रेडियम-ई (Radium E) के लिये प्राप्त बीटा किरण का ऊर्जा वर्णक्रम चित्र में दिखाया गया है। बीटा किरणों की ऊर्जा का शून्य से लेकर अधिकतम मान ई अ के बीच कोई भी मान हो सकता है। ऐसा ही संतत वर्णक्रम उन अभिक्रियाओं में भी मिलता है जिनसे पॉज़िट्रान प्राप्त होते हैं।
बीटा किरणों द्वारा दिए संतत वर्णक्रम का सैद्धांतिक आधार स्थिर करना बहुत समय तक कठिन समस्या बना रहा। मान लिया जाय कि किसी नाभिक क से, जो एक विशेष ऊर्जा के तल पर है, एक बीटा किरण निकलती है और इस अभिक्रया द्वारा एक दूसरा नाभिक ख बनता है, जो पुन: एक विशेष ऊर्जा के तल पर है। पुज एवं ऊर्जास्थिरता के सिद्धांत: के अनुसार, निकले हुए बीटा कण की ऊर्जा नाभिक क एवं ख के ऊर्जातलों क अंतर के बराबर होनी चाहिए। यह ऊर्जा सिद्धांत सर्वदा E=mc2 के तुल्य प्राप्त होती है। परीक्षा से कण शुन्य से लेकर E=mc2 तक सभी मान की ऊर्जा लेकर निकलते हैं। ऐसा प्रतीत हाता है कि ऐसी अभिक्रियाओं में ऊर्जा का कुछ अंश लुप्त हो जाता है और पुंज एवं ऊर्जा स्थिरता के सिद्धांत का अतिक्रमण होता है।
इस समस्या को फर्मी ने बीटा किरण के बाद वाली अपनी न्यूट्रिनो उपकल्पना देकर सर्वप्रथम सफलतापूर्वक सुलझाया। उन्होंने यह सुझाव दिया कि बीटा किरण देने वाली अभिक्रियाओं में एक और कण न्यूट्रिनो भी प्राप्त होता है और वही लुप्त प्रतीत होने वाली ऊर्जा को ग्रहण कर लेता है। आज तक परीक्षा से न्यूट्रिनो की पहचान नहीं हो पाई है, फलत: इसके गुण ऐसे होने चाहिए जिनके कारण इसकी पहचान अति कठिन हो। इसलिये यह धारणा की गई कि न्यूट्रिनो आवेश रहित है और इसका भार इलेक्ट्रान की तुलना में अतिन्यून है, शुन्य के ही लगभग है। न्यूट्रिनो का आवेशरहित होना, बीटा किरण की अभिक्रिया के लिये आवेशस्थिरता के सिद्धांत के अनुसार है। न्यूट्रिनो परिकल्पना के अनुसार, बीटा किरण अभिक्रिया में प्राप्त हुई ऊर्जा की मात्रा इर् अ है। यह ऊर्जा बीटा कण न्यूट्रिनो एवं प्रतिक्षिप्त नाभिक को प्राप्त होती है। तीन कणों में ऊर्जा विभाजन अनेकानेक भाँति हो सकता है, इसलिये संतत वर्णक्रम बन जाता है।
जब एक नाभिक से बीटा किरण प्राप्त होती है, तब नाभिक के आवेश का इकाई द्वारा परिवर्तन होती है, तब नाभिक के आवेश का इकाई द्वारा परिवर्तन होता है, भार अपरिवर्तित रहता है। यदि एक इलेक्ट्रान प्राप्त हो, तो नाभिक के प्रोटान की संख्या में इकाई की वृद्धि होती है तथा क्लीबाणु इकाई द्वारा संख्या इकाई द्वारा कम हो जाती है। उसी भाँति यदि बीटा किरण अभिक्रिया में एक पॉजिट्रॉन प्राप्त हो तो प्रोटान संख्या इकाई द्वारा कम तथा क्लीबान संख्या में इकाई की वृद्धि होती है। इन बीटा रूपांतरों को निम्नलिखित ढंग से स्पष्ट किया जा सकता है:
इन अभिक्रियाओं में न्यूट्रान को प्रोटान, इलेक्ट्रान एवं न्यूट्रिनो से बना हुआ नहीं माना गया है। बीटा-उत्सर्जन के समय, न्यूट्रान का तीन कणों में तत्क्षण परिवर्तन हो जाता है। इसी प्रकार का निवर्तन बीटा +उत्सर्जन में प्रोटान में हो जाता है।
(क) एवं (ख) समीकरणों द्वारा न्यूट्रिनो के अन्य गुणों के बारे में भी सूचना मिलती है। कोणीय गमता h/2 मान ली जाने पर ही उसकी (कोणीय गमता की) स्थिरता का नियम ठीक ठीक घटित होता है। उसी भाँति, सांख्यिकी के बारे में भी सूचना मिलती है। समीकरण (क) एवं (ख) में यदि सांख्यिकी की स्थिरता देखी जाय, तो यह नियम तभी सत्य ठहरता है जब न्यूट्रिनो फर्मी-डिराक सांख्यिकी का अनुसरण करे।
मेसॉन के अपक्षय की समस्याओं को हल करने के लिये भी न्यूट्रिनो परिकल्पना का प्रयोग किया गया। म्यू-मेसॉन (meson) जब एक इलेक्ट्रान में परिवर्तित होता है तब बीटा-किरण अभिक्रिया की भाँति, म्रमि तथा ऊर्जा स्थिरता के नियम खंडित हो जाते हैं। इन नियमों की सत्यता के लिये निम्नलिखित विधि बतलाई गई :
उसी प्रकार ऐल्फ़ा-मेसॉन अपक्षय निम्नलिखित समीकरण द्वारा दिखलाया जा सकता है।
(ग) एवं (घ) समीकरणों के विरूद्ध कोई संपरिक्षीय साक्ष्य नहीं है
इस भाँति न्यूट्रिनो द्वारा बीटा किरण एवं मेसॉन के अपक्ष्य की समस्याओं का सामाधान हुआ है। इस कण के लिये सभी साक्ष्य अभी तक अप्रत्यक्ष ही हैं।
Nutirino ka khoj kishne Kiya
who was the discoverer of neutrino
Nutrino ki khoj kisne ki
Nutrino ki khoj kisne ki
नीचे दिए गए विषय पर सवाल जवाब के लिए टॉपिक के लिंक पर क्लिक करें Culture Question Bank International Relations Security and Defence Social Issues English Antonyms English Language English Related Words English Vocabulary Ethics and Values Geography Geography - india Geography -physical Geography-world River Gk GK in Hindi (Samanya Gyan) Hindi language History History - ancient History - medieval History - modern History-world Age Aptitude- Ratio Aptitude-hindi Aptitude-Number System Aptitude-speed and distance Aptitude-Time and works Area Art and Culture Average Decimal Geometry Interest L.C.M.and H.C.F Mixture Number systems Partnership Percentage Pipe and Tanki Profit and loss Ratio Series Simplification Time and distance Train Trigonometry Volume Work and time Biology Chemistry Science Science and Technology Chattishgarh Delhi Gujarat Haryana Jharkhand Jharkhand GK Madhya Pradesh Maharashtra Rajasthan States Uttar Pradesh Uttarakhand Bihar Computer Knowledge Economy Indian culture Physics Polity
jindgi se ham kya kare